

Welcome to HyperLearn!

HyperLearn aims to make Machine Learning algorithms run in at least 50% of their original time. Algorithms from Linear Regression to Principal Component Analysis are optimized by using LAPACK, BLAS, and parallelized through Numba.

Some key current achievements of HyperLearn:

	70% less time to fit Least Squares / Linear Regression than sklearn + 50% less memory usage

	50% less time to fit Non Negative Matrix Factorization than sklearn due to new parallelized algo

	40% faster full Euclidean / Cosine distance algorithms

	50% less time LSMR iterative least squares

	New Reconstruction SVD - use SVD to impute missing data! Has .fit AND .transform. Approx 30% better than mean imputation

	50% faster Sparse Matrix operations - parallelized

	RandomizedSVD is now 20 - 30% faster

Example code

Singular Value Decomposition

import hyperlearn as hl
U, S, VT = hl.linalg.svd(X)

Pseudoinverse of a matrix using Cholesky Decomposition

from hyperlearn.linalg import pinvc
inv = pinvc(X)

check if pinv(X) * X = identity
check = inv.dot(X)

QR Decomposition wanting only Q matrix

from hyperlearn import linalg
Q = linalg.qr(X, Q_only = True)

check if Q == Q from full QR
q, r = linalg.qr(X)

	hyperlearn
	hyperlearn package
	Submodules

	hyperlearn.base module

	hyperlearn.linalg module

	hyperlearn.utils module

	hyperlearn.random module

	hyperlearn.exceptions module

	hyperlearn.multiprocessing module

	hyperlearn.numba module

	hyperlearn.solvers module

	hyperlearn.stats module

	hyperlearn.big_data.base module

	hyperlearn.big_data.incremental module

	hyperlearn.big_data.lsmr module

	hyperlearn.big_data.randomized module

	hyperlearn.big_data.truncated module

	hyperlearn.decomposition.base module

	hyperlearn.decomposition.NMF module

	hyperlearn.decomposition.PCA module

	hyperlearn.decomposition.PCA module

	hyperlearn.discriminant_analysis.base module

	hyperlearn.discriminant_analysis.QDA module

	hyperlearn.impute.SVDImpute module

	hyperlearn.metrics.cosine module

	hyperlearn.metrics.euclidean module

	hyperlearn.metrics.pairwise module

	hyperlearn.sparse.base module

	hyperlearn.sparse.csr module

	hyperlearn.sparse.tcsr module

	Module contents

	hyperlearn.base
	Example code:

	hyperlearn.linalg
	Matrix Decompositions

	Eigenvalue Problems

	Matrix Inversion

	License
	Preamble

	TERMS AND CONDITIONS

	Contact

Directory

	Index

	Module Index

	Search Page

hyperlearn

	hyperlearn package
	Submodules

	hyperlearn.base module

	hyperlearn.linalg module

	hyperlearn.utils module

	hyperlearn.random module

	hyperlearn.exceptions module

	hyperlearn.multiprocessing module

	hyperlearn.numba module

	hyperlearn.solvers module

	hyperlearn.stats module

	hyperlearn.big_data.base module

	hyperlearn.big_data.incremental module

	hyperlearn.big_data.lsmr module

	hyperlearn.big_data.randomized module

	hyperlearn.big_data.truncated module

	hyperlearn.decomposition.base module

	hyperlearn.decomposition.NMF module

	hyperlearn.decomposition.PCA module

	hyperlearn.decomposition.PCA module

	hyperlearn.discriminant_analysis.base module

	hyperlearn.discriminant_analysis.QDA module

	hyperlearn.impute.SVDImpute module

	hyperlearn.metrics.cosine module

	hyperlearn.metrics.euclidean module

	hyperlearn.metrics.pairwise module

	hyperlearn.sparse.base module

	hyperlearn.sparse.csr module

	hyperlearn.sparse.tcsr module

	Module contents

hyperlearn package

Submodules

hyperlearn.base module

	
hyperlearn.base.Numpy(*args)

	

	
hyperlearn.base.T(X)

	

	
hyperlearn.base.Tensor(X)

	

	
hyperlearn.base.Tensors(*args)

	

	
hyperlearn.base.USE_NUMBA = True

	Type Checks
Updated 27/8/2018
————————————————————

	
hyperlearn.base.array(X)

	

	
hyperlearn.base.cast(X, dtype)

	

	
hyperlearn.base.check(f)

	

	
hyperlearn.base.constant(X)

	

	
hyperlearn.base.diag(input, diagonal=0, out=None) → Tensor

	
	If input is a vector (1-D tensor), then returns a 2-D square tensor
with the elements of input as the diagonal.

	If input is a matrix (2-D tensor), then returns a 1-D tensor with
the diagonal elements of input.

The argument diagonal controls which diagonal to consider:

	If diagonal = 0, it is the main diagonal.

	If diagonal > 0, it is above the main diagonal.

	If diagonal < 0, it is below the main diagonal.

	Args:

	input (Tensor): the input tensor.
diagonal (int, optional): the diagonal to consider
out (Tensor, optional): the output tensor.

See also

torch.diagonal() always returns the diagonal of its input.

torch.diagflat() always constructs a tensor with diagonal elements
specified by the input.

Examples:

Get the square matrix where the input vector is the diagonal:

>>> a = torch.randn(3)
>>> a
tensor([0.5950,-0.0872, 2.3298])
>>> torch.diag(a)
tensor([[0.5950, 0.0000, 0.0000],
 [0.0000,-0.0872, 0.0000],
 [0.0000, 0.0000, 2.3298]])
>>> torch.diag(a, 1)
tensor([[0.0000, 0.5950, 0.0000, 0.0000],
 [0.0000, 0.0000,-0.0872, 0.0000],
 [0.0000, 0.0000, 0.0000, 2.3298],
 [0.0000, 0.0000, 0.0000, 0.0000]])

Get the k-th diagonal of a given matrix:

>>> a = torch.randn(3, 3)
>>> a
tensor([[-0.4264, 0.0255,-0.1064],
 [0.8795,-0.2429, 0.1374],
 [0.1029,-0.6482,-1.6300]])
>>> torch.diag(a, 0)
tensor([-0.4264,-0.2429,-1.6300])
>>> torch.diag(a, 1)
tensor([0.0255, 0.1374])

	
hyperlearn.base.diagSum(X, Y, transpose_a=False)

	

	
hyperlearn.base.dtype(tensor)

	

	
hyperlearn.base.einsum(notation, *args, tensor=False)

	

	
hyperlearn.base.eps(X)

	

	
hyperlearn.base.isArray(X)

	

	
hyperlearn.base.isDict(X)

	

	
hyperlearn.base.isIterable(X)

	

	
hyperlearn.base.isList(X)

	

	
hyperlearn.base.isTensor(X)

	

	
hyperlearn.base.ones(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor

	Returns a tensor filled with the scalar value 1, with the shape defined
by the variable argument size.

	Args:

	
	size (int…): a sequence of integers defining the shape of the output tensor.

	Can be a variable number of arguments or a collection like a list or tuple.

out (Tensor, optional): the output tensor.
dtype (torch.dtype, optional): the desired data type of returned tensor.

Default: if None, uses a global default (see torch.set_default_tensor_type()).

	layout (torch.layout, optional): the desired layout of returned Tensor.

	Default: torch.strided.

	device (torch.device, optional): the desired device of returned tensor.

	Default: if None, uses the current device for the default tensor type
(see torch.set_default_tensor_type()). device will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.

	requires_grad (bool, optional): If autograd should record operations on the

	returned tensor. Default: False.

Example:

>>> torch.ones(2, 3)
tensor([[1., 1., 1.],
 [1., 1., 1.]])

>>> torch.ones(5)
tensor([1., 1., 1., 1., 1.])

	
hyperlearn.base.resolution(X)

	

	
hyperlearn.base.return_numpy(args)

	

	
hyperlearn.base.return_torch(args)

	

	
hyperlearn.base.rowSum(X, Y=None, transpose_a=False)

	

	
hyperlearn.base.squareSum(X)

	

	
hyperlearn.base.stack(*args)

	

	
hyperlearn.base.torch_dot()

	matmul(input, other, out=None) -> Tensor

Matrix product of two tensors.

The behavior depends on the dimensionality of the tensors as follows:

	If both tensors are 1-dimensional, the dot product (scalar) is returned.

	If both arguments are 2-dimensional, the matrix-matrix product is returned.

	If the first argument is 1-dimensional and the second argument is 2-dimensional,
a 1 is prepended to its dimension for the purpose of the matrix multiply.
After the matrix multiply, the prepended dimension is removed.

	If the first argument is 2-dimensional and the second argument is 1-dimensional,
the matrix-vector product is returned.

	If both arguments are at least 1-dimensional and at least one argument is
N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first
argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the
batched matrix multiply and removed after. If the second argument is 1-dimensional, a
1 is appended to its dimension for the purpose of the batched matrix multiple and removed after.
The non-matrix (i.e. batch) dimensions are broadcasted (and thus
must be broadcastable). For example, if input is a
\((j \times 1 \times n \times m)\) tensor and other is a \((k \times m \times p)\)
tensor, out will be an \((j \times k \times n \times p)\) tensor.

Note

The 1-dimensional dot product version of this function does not support an out parameter.

	Arguments:

	input (Tensor): the first tensor to be multiplied
other (Tensor): the second tensor to be multiplied
out (Tensor, optional): the output tensor.

Example:

>>> # vector x vector
>>> tensor1 = torch.randn(3)
>>> tensor2 = torch.randn(3)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([])
>>> # matrix x vector
>>> tensor1 = torch.randn(3, 4)
>>> tensor2 = torch.randn(4)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([3])
>>> # batched matrix x broadcasted vector
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(4)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3])
>>> # batched matrix x batched matrix
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(10, 4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3, 5])
>>> # batched matrix x broadcasted matrix
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3, 5])

hyperlearn.linalg module

	
hyperlearn.linalg.cholesky(XTX, alpha=None, fast=True)

	Computes the Cholesky Decompsition of a Hermitian Matrix
(Positive Symmetric Matrix) giving a Upper Triangular Matrix.

Cholesky Decomposition is used as the default solver in HyperLearn,
as it is super fast and allows regularization. HyperLearn’s
implementation also handles rank deficient and ill-conditioned
matrices perfectly with the help of the limiting behaivour of
adding forced epsilon regularization.

	If USE_GPU:

	Uses PyTorch’s Cholesky. Speed is OK.

	If CPU:

	Uses Numpy’s Fortran C based Cholesky.
If NUMBA is not installed, uses very fast LAPACK functions.

Alpha is added for regularization purposes. This prevents system
rounding errors and promises better convergence rates.

	
hyperlearn.linalg.invCholesky(X, fast=False)

	Computes the Inverse of a Hermitian Matrix
(Positive Symmetric Matrix) after provided with Cholesky’s
Lower Triangular Matrix.

This is used in conjunction in solveCholesky, where the
inverse of the covariance matrix is needed.

	If USE_GPU:

	Uses PyTorch’s Triangular Solve given identity matrix. Speed is OK.

	If CPU:

	Uses very fast LAPACK algorithms for triangular system inverses.

Note that LAPACK’s single precision (float32) solver (strtri) is much more
unstable than double (float64). So, default strtri is OFF.
However, speeds are reduced by 50%.

	
hyperlearn.linalg.pinvCholesky(X, alpha=None, fast=False)

	Computes the approximate pseudoinverse of any matrix using Cholesky Decomposition
This means X @ pinv(X) approx = eye(n).

Note that this is super fast, and will be used in HyperLearn as the default
pseudoinverse solver for any matrix. Care is taken to make the algorithm
converge, and this is done via forced epsilon regularization.

HyperLearn’s implementation also handles rank deficient and ill-conditioned
matrices perfectly with the help of the limiting behaivour of
adding forced epsilon regularization.

	If USE_GPU:

	Uses PyTorch’s Cholesky. Speed is OK.

	If CPU:

	Uses Numpy’s Fortran C based Cholesky.
If NUMBA is not installed, uses very fast LAPACK functions.

Alpha is added for regularization purposes. This prevents system
rounding errors and promises better convergence rates.

	
hyperlearn.linalg.cholSolve(A, b, alpha=None)

	[Added 20/10/2018]
Faster than direct inverse solve. Finds coefficients in linear regression
allowing A @ theta = b.
Notice auto adds epsilon jitter if solver fails.

	
hyperlearn.linalg.svd(X, fast=True, U_decision=False, transpose=True)

	[Edited 9/11/2018 –> Modern Big Data Algorithms p/n ratio check]
Computes the Singular Value Decomposition of any matrix.
So, X = U * S @ VT. Note will compute svd(X.T) if p > n.
Should be 99% same result. This means this implementation’s
time complexity is O[min(np^2, n^2p)]

	If USE_GPU:

	Uses PyTorch’s SVD. PyTorch uses (for now) a NON divide-n-conquer algo.
Submitted report to PyTorch:
https://github.com/pytorch/pytorch/issues/11174

	If CPU:

	Uses Numpy’s Fortran C based SVD.
If NUMBA is not installed, uses divide-n-conqeur LAPACK functions.

	If Transpose:

	Will compute if possible svd(X.T) instead of svd(X) if p > n.
Default setting is TRUE to maintain speed.

SVD_Flip is used for deterministic output. Does NOT follow Sklearn convention.
This flips the signs of U and VT, using VT_based decision.

	
hyperlearn.linalg.lu(X, L_only=False, U_only=False)

	[Edited 8/11/2018 Changed to LAPACK LU if L/U only wanted]
Computes the LU Decomposition of any matrix with pivoting.
Provides L only or U only if specified.

Much faster than Scipy if only U/L wanted, and more memory efficient,
since data is altered inplace.

	
hyperlearn.linalg.qr(X, Q_only=False, R_only=False, overwrite=False)

	[Edited 8/11/2018 Added Q, R only parameters. Faster than Numba]
[Edited 9/11/2018 Made R only more memory efficient (no data copying)]
Computes the reduced QR Decomposition of any matrix.
Uses optimized NUMBA QR if avaliable else use’s Scipy’s
version.

Provides Q or R only if specified, and is must faster + more memory
efficient since data is changed inplace.

	
hyperlearn.linalg.pinv(X, alpha=None, fast=True)

	Computes the pseudoinverse of any matrix.
This means X @ pinv(X) = eye(n).

Optional alpha is used for regularization purposes.

	If USE_GPU:

	Uses PyTorch’s SVD. PyTorch uses (for now) a NON divide-n-conquer algo.
Submitted report to PyTorch:
https://github.com/pytorch/pytorch/issues/11174

	If CPU:

	Uses Numpy’s Fortran C based SVD.
If NUMBA is not installed, uses divide-n-conqeur LAPACK functions.

	Condition number is:

	float32 = 1e3 * eps * max(S)
float64 = 1e6 * eps * max(S)

	
hyperlearn.linalg.pinvh(XTX, alpha=None, fast=True)

	Computes the pseudoinverse of a Hermitian Matrix
(Positive Symmetric Matrix) using Eigendecomposition.

Uses the fact that the matrix is special, and so time
complexity is approximately reduced by 1/2 or more when
compared to full SVD.

	If USE_GPU:

	Uses PyTorch’s EIGH. PyTorch uses (for now) a non divide-n-conquer algo.

	If CPU:

	Uses Numpy’s Fortran C based EIGH.
If NUMBA is not installed, uses very fast divide-n-conqeur LAPACK functions.
Note Scipy’s EIGH as of now is NON divide-n-conquer.
Submitted report to Scipy:
https://github.com/scipy/scipy/issues/9212

	Condition number is:

	float32 = 1e3 * eps * max(abs(S))
float64 = 1e6 * eps * max(abs(S))

Alpha is added for regularization purposes. This prevents system
rounding errors and promises better convergence rates.

	
hyperlearn.linalg.eigh(XTX, alpha=None, fast=True, svd=False, positive=False, qr=False)

	Computes the Eigendecomposition of a Hermitian Matrix
(Positive Symmetric Matrix).

Note: Slips eigenvalues / eigenvectors with MAX first.
Scipy convention is MIN first, but MAX first is SVD convention.

Uses the fact that the matrix is special, and so time
complexity is approximately reduced by 1/2 or more when
compared to full SVD.

If POSITIVE is True, then all negative eigenvalues will be set
to zero, and return value will be VT and not V.

If SVD is True, then eigenvalues will be square rooted as well.

	If USE_GPU:

	Uses PyTorch’s EIGH. PyTorch uses (for now) a non divide-n-conquer algo.

	If CPU:

	Uses Numpy’s Fortran C based EIGH.
If NUMBA is not installed, uses very fast divide-n-conqeur LAPACK functions.
Note Scipy’s EIGH as of now is NON divide-n-conquer.
Submitted report to Scipy:
https://github.com/scipy/scipy/issues/9212

Alpha is added for regularization purposes. This prevents system
rounding errors and promises better convergence rates.

Also uses eig_flip to flip the signs of the eigenvectors
to ensure deterministic output.

	
hyperlearn.linalg.pinvEig(X, alpha=None, fast=True)

	Computes the approximate pseudoinverse of any matrix X
using Eigendecomposition on the covariance matrix XTX or XXT

	Uses a special trick where:

	If n >= p: X^-1 approx = (XT @ X)^-1 @ XT
If n < p: X^-1 approx = XT @ (X @ XT)^-1

	If USE_GPU:

	Uses PyTorch’s EIGH. PyTorch uses (for now) a non divide-n-conquer algo.

	If CPU:

	Uses Numpy’s Fortran C based EIGH.
If NUMBA is not installed, uses very fast divide-n-conqeur LAPACK functions.
Note Scipy’s EIGH as of now is NON divide-n-conquer.
Submitted report to Scipy:
https://github.com/scipy/scipy/issues/9212

	Condition number is:

	float32 = 1e3 * eps * max(abs(S))
float64 = 1e6 * eps * max(abs(S))

Alpha is added for regularization purposes. This prevents system
rounding errors and promises better convergence rates.

	
hyperlearn.linalg.eig(X, alpha=None, fast=True, U_decision=False, svd=False, stable=False)

	[Edited 8/11/2018 Made QR-SVD even faster –> changed to n >= p from n >= 5/3p]
Computes the Eigendecomposition of any matrix using either
QR then SVD or just SVD. This produces much more stable solutions
that pure eigh(covariance), and thus will be necessary in some cases.

If STABLE is True, then EIGH will be bypassed, and instead SVD or QR/SVD
will be used instead. This is to guarantee stability, since EIGH
uses epsilon jitter along the diagonal of the covariance matrix.

	If n >= 5/3 * p:

	Uses QR followed by SVD noticing that U is not needed.
This means Q @ U is not required, reducing work.

Note Sklearn’s Incremental PCA was used for the constant
5/3 [Matrix Computations, Third Edition, G. Holub and C.
Van Loan, Chapter 5, section 5.4.4, pp 252-253.]

	Else If n >= p:

	SVD is used, as QR would be slower.

	Else If n <= p:

	SVD Transpose is used svd(X.T)

	If stable is False:

	Eigh is used or SVD depending on the memory requirement.

Eig is the most stable Eigendecomposition in HyperLearn. It
surpasses the stability of Eigh, as no epsilon jitter is added,
unless specified when stable = False.

hyperlearn.utils module

	
class hyperlearn.utils.lapack(function, fast=True, numba=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

[Added 11/11/2018] [Edited 13/11/2018 -> made into a class]
[Edited 14/11/2018 -> fixed class]
Get a LAPACK function based on the dtype(X). Acts like Scipy.

	
hyperlearn.utils.svd_flip(U, VT, U_decision=True)

	Flips the signs of U and VT for SVD in order to force deterministic output.

Follows Sklearn convention by looking at U’s maximum in columns
as default.

	
hyperlearn.utils.eig_flip(V)

	Flips the signs of V for Eigendecomposition in order to
force deterministic output.

Follows Sklearn convention by looking at V’s maximum in columns
as default. This essentially mirrors svd_flip(U_decision = False)

	
hyperlearn.utils.memoryXTX(X)

	Computes the memory usage for X.T @ X so that error messages
can be broadcast without submitting to a memory error.

	
hyperlearn.utils.memoryCovariance(X)

	Computes the memory usage for X.T @ X or X @ X.T so that error messages
can be broadcast without submitting to a memory error.

	
hyperlearn.utils.memorySVD(X)

	Computes the approximate memory usage of SVD(X) [transpose or not].
How it’s computed:

X = U * S * VT
U(n,p) * S(p) * VT(p,p)
This means RAM usgae is np+p+p^2 approximately.

TODO: Divide N Conquer SVD vs old SVD

	
hyperlearn.utils.traceXTX

	[Edited 18/10/2018]
One drawback of truncated algorithms is that they can’t output the correct
variance explained ratios, since the full eigenvalue decomp needs to be
done. However, using linear algebra, trace(XT*X) = sum(eigenvalues).

So, this function outputs the trace(XT*X) efficiently without computing
explicitly XT*X.

Changes –> now uses Numba which is approx 20% faster.

	
hyperlearn.utils.fastDot(A, B, C)

	[Added 23/9/2018]
[Updated 1/10/2018 Error in calculating which is faster]
Computes a fast matrix multiplication of 3 matrices.
Either performs (A @ B) @ C or A @ (B @ C) depending which is more
efficient.

	
hyperlearn.utils.rowSum(X, norm=False)

	[Added 22/10/2018]
Combines rowSum for matrices and arrays.

	
hyperlearn.utils.rowSum_A

	[Added 22/10/2018]
Computes rowSum**2 for dense array efficiently, instead of using einsum

	
hyperlearn.utils.reflect(X, n_jobs=1)

	[Added 15/10/2018] [Edited 18/10/2018]
Reflects lower triangular of matrix efficiently to upper.
Notice much faster than say X += X.T or naive:

	for i in range(n):

	
	for j in range(i, n):

	X[i,j] = X[j,i]

	In fact, it is much faster to perform vertically:

	
	for i in range(1, n):

	Xi = X[i]
for j in range(i):

X[j,i] = Xi[j]

The trick is to notice X[i], which reduces array access.

	
hyperlearn.utils.addDiagonal(X, c=1)

	[Added 11/11/2018]
Add c to diagonal of matrix

	
hyperlearn.utils.setDiagonal(X, c=1)

	[Added 11/11/2018]
Set c to diagonal of matrix

hyperlearn.random module

	
hyperlearn.random.uniform(left, right, n, p=None, dtype=<class 'numpy.float32'>)

	[Added 6/11/2018]

Produces pseudo-random uniform numbers between left and right range.
Notice much more memory efficient than Numpy, as provides
a DTYPE argument (float32 supported).

	
hyperlearn.random.uniform_vector

	

hyperlearn.exceptions module

	
exception hyperlearn.exceptions.FutureExceedsMemory(text='Operation done in the future uses more memory than what is free. HyperLearn')

	Bases: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]

	
exception hyperlearn.exceptions.PartialWrongShape(text='Partial SVD or Eig needs the same number of columns in both the previous iteration and the future iteration. Currenlty, the number of columns is different.')

	Bases: BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]

hyperlearn.multiprocessing module

hyperlearn.numba module

	
hyperlearn.numba.svd

	

	
hyperlearn.numba.pinv

	

	
hyperlearn.numba.eigh

	

	
hyperlearn.numba.cholesky

	

	
hyperlearn.numba.lstsq

	

	
hyperlearn.numba.qr

	

	
hyperlearn.numba.norm

	

	
hyperlearn.numba.mean(X, axis=0)

	

	
hyperlearn.numba.sign

	

	
hyperlearn.numba.arange

	

	
hyperlearn.numba.minimum

	

	
hyperlearn.numba.maximum

	

	
hyperlearn.numba.multsum

	

	
hyperlearn.numba.squaresum

	

hyperlearn.solvers module

	
hyperlearn.solvers.solve(X, y, tol=1e-06, condition_limit=100000000.0, alpha=None, weights=None, copy=False, non_negative=False, max_iter=None)

	[As of 12/9/2018, an optional non_negative argument is added. Note as accurate as Scipy’s NNLS,
by copies ideas from gradient descent.]

[NOTE: as of 12/9/2018, LSMR is default in HyperLearn, replacing the 2nd fastest Cholesky
Solve. LSMR is 2-4 times faster, and uses N less memory]

>>> WEIGHTS is an array of Weights for Weighted / Generalized Least Squares [default None]
>>> theta = (XT*W*X)^-1*(XT*W*y)

Implements extremely fast least squares LSMR using orthogonalization as seen in Scipy’s LSMR and
https://arxiv.org/abs/1006.0758 [LSMR: An iterative algorithm for sparse least-squares problems]
by David Fong, Michael Saunders.

Scipy’s version of LSMR is surprisingly slow, as some slow design factors were used
(ie np.sqrt(1 number) is slower than number**0.5, or min(a,b) is slower than using 1 if statement.)

ALPHA is provided for regularization purposes like Ridge Regression.

	This algorithm works well for Sparse Matrices as well, and the time complexity analysis is approx:

	X.T @ y * min(n,p) times + 3 or so O(n) operations
==> O(np)*min(n,p)
==> either min(O(n^2p + n), O(np^2 + n))
*** Note if Weights is present, complexity increases.

Instead of fitting X^T*W*X, fits X^T/sqrt(W)
So, O(np+n) is needed extra.

This complexity is much better than Cholesky Solve which is the next fastest in HyperLearn.
Cholesky requires O(np^2) for XT * X, then Cholesky needs an extra 1/3*O(np^2), then inversion
takes another 1/3*(np^2), and finally (XT*y) needs O(np).

So Cholesky needs O(5/3np^2 + np) >> min(O(n^2p + n), O(np^2 + n))

So by factor analysis, expect LSMR to be approx 2 times faster or so.

Interestingly, the Space Complexity is even more staggering. LSMR takes only maximum O(np^2) space
for the computation of XT * y + some overhead.

	*** Note if Weights is present, and COPY IS TRUE, then memory is DOUBLED.

	Hence, try setting COPY to FALSE, memory will not change, and X will return back to its
original state afterwards.

Cholesky requires XT * X space, which is already max O(n^2p) [which is huge].
Essentially, Cholesky shines when P is large, but N is small. LSMR is good for large N, medium P

Theta_hat = (XT * W * X)^-1 * (XT * y)
In other words in gradient descent / iterative solves solve:

X * sqrt(W) * theta_hat = y * sqrt(W)

or: X*sqrt(W) ==> y*sqrt(W)

	
hyperlearn.solvers.solveCholesky(X, y, alpha=None, fast=True)

	
	[Added 23/9/2018 added matrix multiplication decisions (faster multiply)

	ie: if (XTX)^1(XTy) or ((XTX)^-1XT)y is faster]

[Edited 20/10/2018 Major update - added LAPACK cholSolve –> 20% faster]
[Edited 30/10/2018 Reduced RAM usage by clearing unused variables]

Computes the Least Squares solution to X @ theta = y using Cholesky
Decomposition. This is the default solver in HyperLearn.

Cholesky Solving is used as the 2nd default solver [as of 12/9/2018, default
has been switched to LSMR (called solve)] in HyperLearn,
as it is super fast and allows regularization. HyperLearn’s
implementation also handles rank deficient and ill-conditioned
matrices perfectly with the help of the limiting behaivour of
adding forced epsilon regularization.

Optional alpha is used for regularization purposes.

Method | Operations | Factor * np^2 |

-----------	—————–	---------------
Cholesky	1/3 * np^2	1/3
QR	p^3/3 + np^2	1 - p/3n
SVD	p^3 + np^2	1 - p/n

	If USE_GPU:

	Uses PyTorch’s Cholesky and Triangular Solve given identity matrix.
Speed is OK.

	If CPU:

	Uses Numpy’s Fortran C based Cholesky.
If NUMBA is not installed, uses very fast LAPACK functions.
Also, uses very fast LAPACK algorithms for triangular system inverses.

Note that LAPACK’s single precision (float32) solver (strtri) is much more
unstable than double (float64). You might see stability problems if FAST = TRUE.
Set it to FALSE if theres issues.

	
hyperlearn.solvers.solveSVD(X, y, n_components=None, alpha=None, fast=True)

	[Edited 6/11/2018 Added n_components for Partial Solving]
Computes the Least Squares solution to X @ theta = y using SVD.
Slow, but most accurate. Specify n_components to reduce overfitting.
Heurestic is 95% of variance is captured, if set to ‘auto’.

Optional alpha is used for regularization purposes.

	If USE_GPU:

	Uses PyTorch’s SVD. PyTorch uses (for now) a NON divide-n-conquer algo.
Submitted report to PyTorch:
https://github.com/pytorch/pytorch/issues/11174

	If CPU:

	Uses Numpy’s Fortran C based SVD.
If NUMBA is not installed, uses divide-n-conqeur LAPACK functions.

	Condition number is:

	float32 = 1e3 * eps * max(S)
float64 = 1e6 * eps * max(S)

	
hyperlearn.solvers.solveEig(X, y, alpha=None, fast=True)

	[Edited 30/10/2018 Reduced RAM usage by clearing unused variables]

Computes the Least Squares solution to X @ theta = y using
Eigendecomposition on the covariance matrix XTX or XXT.
Medium speed and accurate, where this lies between
SVD and Cholesky.

Optional alpha is used for regularization purposes.

	If USE_GPU:

	Uses PyTorch’s EIGH. PyTorch uses (for now) a non divide-n-conquer algo.
Submitted report to PyTorch:
https://github.com/pytorch/pytorch/issues/11174

	If CPU:

	Uses Numpy’s Fortran C based EIGH.
If NUMBA is not installed, uses divide-n-conqeur LAPACK functions.
Note Scipy’s EIGH as of now is NON divide-n-conquer.
Submitted report to Scipy:
https://github.com/scipy/scipy/issues/9212

	Condition number is:

	float32 = 1e3 * eps * max(abs(S))
float64 = 1e6 * eps * max(abs(S))

Alpha is added for regularization purposes. This prevents system
rounding errors and promises better convergence rates.

	
hyperlearn.solvers.solvePartial(X, y, n_components=None, alpha=None, fast=True)

	[Added 6/11/2018]
Computes the Least Squares solution to X @ theta = y using Randomized SVD.
Much faster than normal SVD solving, and is not prone is overfitting.

Optional alpha is used for regularization purposes.

	
hyperlearn.solvers.lstsq(X, y)

	Returns normal Least Squares solution using LAPACK and Numba if
installed. PyTorch will default to Cholesky Solve.

	
hyperlearn.solvers.solveTLS(X, y, solver='truncated')

	[Added 6/11/2018]
Performs Total Least Squares based on the implementation in Wikipedia:
https://en.wikipedia.org/wiki/Total_least_squares.
The naming is rather deceptive, as it doesn’t mean it’ll yield better
results than pure SVD solving.
Normal linear regression assumes Y|X has gaussian noise. TLS assumes this
AND X|Y has noise.

Two solvers - full, truncated. Truncated is much much faster, as smallest
eigen component is needed. Full solver uses Eigendecomposition, which is
much much slower, but more accurate.

hyperlearn.stats module

	
hyperlearn.stats.corr(X, y)

	

	
hyperlearn.stats.qr_stats(Q, R)

	XTX^-1 = RT * R

h = diag Q * QT

mean(h) used for normalized leverage

	
hyperlearn.stats.svd_stats(U, S, VT)

	
1

	XTX^-1 = V —– VT

	S^2

h = diag U * UT

mean(h) used for normalized leverage

	
hyperlearn.stats.ridge_stats(U, S, VT, alpha=1)

	
S^2

	exp_theta_hat = diag V ——— VT

	S^2 + aI

S^2

	var_theta_hat = diag V ————- VT

	
(S^2 + aI)^2

1

	XTX^-1 = V ——— VT

	S^2 + aI

S^2

	h = diag U ——— UT

	S^2 + aI

mean(h) used for normalized leverage

hyperlearn.big_data.base module

hyperlearn.big_data.incremental module

	
hyperlearn.big_data.incremental.partialEig(batch, S2, V, ratio=1, solver='full', tol=None, max_iter='auto')

	Fits a partial Eigendecomp after given old eigenvalues S2
and old eigenvector components V.

Note that V will be used as the number of old components,
so when calling truncated or randomized, will output a
specific number of eigenvectors and eigenvalues.

Checks if new batch’s size matches that of the old V.

	Note that PartialEig has different solvers. Either choose:

	
	
	full

	Solves full Eigendecompsition on the data. This is the most
stable and will guarantee the most robust results.
You can select the number of components to keep
within the model later.

	
	truncated

	This keeps the top K right eigenvectors and top
k eigenvalues, as determined by n_components. Note full Eig
is not called for the truncated case, but rather ARPACK is called.

	
	randomized

	Same as truncated, but instead of using ARPACK, uses
randomized Eig.

	
hyperlearn.big_data.incremental.partialSVD(batch, S, VT, ratio=1, solver='full', tol=None, max_iter='auto')

	Fits a partial SVD after given old singular values S
and old components VT.

Note that VT will be used as the number of old components,
so when calling truncated or randomized, will output a
specific number of eigenvectors and singular values.

Checks if new batch’s size matches that of the old VT.

	Note that PartialSVD has different solvers. Either choose:

	
	
	full

	Solves full SVD on the data. This is the most
stable and will guarantee the most robust results.
You can select the number of components to keep
within the model later.

	
	truncated

	This keeps the top K right eigenvectors and top
k right singular values, as determined by
n_components. Note full SVD is not called for the
truncated case, but rather ARPACK is called.

	
	randomized

	Same as truncated, but instead of using ARPACK, uses
randomized SVD.

Notice how Batch = U @ S @ VT. However, partialSVD returns
S, VT, and not U. In order to get U, you might consider using
the relation that X = U @ S @ VT, and approximating U by:

X = U @ S @ VT
X @ V = U @ S
(X @ V)/S = U

So, U = (X @ V)/S, so you can output U from (X @ V)/S

You can also get U partially and slowly using reverseU.

hyperlearn.big_data.lsmr module

	
hyperlearn.big_data.lsmr.Orthogonalize(a, b)

	

	
hyperlearn.big_data.lsmr.floatType(dtype)

	

	
hyperlearn.big_data.lsmr.lsmr(X, y, tol=1e-06, condition_limit=100000000.0, alpha=0, threshold=1000000000000.0, non_negative=False, max_iter=None)

	[As of 12/9/2018, an optional non_negative argument is added. Note as accurate as Scipy’s NNLS,
by copies ideas from gradient descent.]

Implements extremely fast least squares LSMR using orthogonalization as seen in Scipy’s LSMR and
https://arxiv.org/abs/1006.0758 [LSMR: An iterative algorithm for sparse least-squares problems]
by David Fong, Michael Saunders.

Scipy’s version of LSMR is surprisingly slow, as some slow design factors were used
(ie np.sqrt(1 number) is slower than number**0.5, or min(a,b) is slower than using 1 if statement.)

ALPHA is provided for regularization purposes like Ridge Regression.

	This algorithm works well for Sparse Matrices as well, and the time complexity analysis is approx:

	X.T @ y * min(n,p) times + 3 or so O(n) operations
==> O(np)*min(n,p)
==> either min(O(n^2p + n), O(np^2 + n))

This complexity is much better than Cholesky Solve which is the next fastest in HyperLearn.
Cholesky requires O(np^2) for XT * X, then Cholesky needs an extra 1/3*O(np^2), then inversion
takes another 1/3*(np^2), and finally (XT*y) needs O(np).

So Cholesky needs O(5/3np^2 + np) >> min(O(n^2p + n), O(np^2 + n))

So by factor analysis, expect LSMR to be approx 2 times faster or so.
Interestingly, the Space Complexity is even more staggering. LSMR takes only maximum O(np^2) space
for the computation of XT * y + some overhead.

Cholesky requires XT * X space, which is already max O(n^2p) [which is huge].
Essentially, Cholesky shines when P is large, but N is small. LSMR is good for large N, medium P

hyperlearn.big_data.randomized module

	
hyperlearn.big_data.randomized.randomizedEig(X, n_components=2, max_iter='auto', solver='lu', n_oversamples=10)

	[Edited 9/11/2018 Fixed Eig_Flip]
HyperLearn’s Randomized Eigendecomposition is an extension of Sklearn’s
randomized SVD. HyperLearn notices that the computation of U is not necessary,
hence will use QR followed by SVD or just SVD depending on the situation.

Likewise, solver = LU is default, and follows randomizedSVD

References

	Sklearn’s RandomizedSVD

	Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061

	A randomized algorithm for the decomposition of matrices
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert

	An implementation of a randomized algorithm for principal component
analysis
A. Szlam et al. 2014

	
hyperlearn.big_data.randomized.randomizedPinv(X, n_components=None, alpha=None)

	[Added 6/11/2018]
Implements fast randomized pseudoinverse with regularization.
Can be used as an approximation to the matrix inverse.

	
hyperlearn.big_data.randomized.randomizedSVD(X, n_components=2, max_iter='auto', solver='lu', n_oversamples=10)

	[Edited 9/11/2018 Fixed SVD_flip]
HyperLearn’s Fast Randomized SVD is approx 10 - 30 % faster than
Sklearn’s implementation depending on n_components and max_iter.

Uses NUMBA Jit accelerated functions when available, and tries to
reduce memory overhead by chaining operations.

Uses QR, LU or no solver to find the best SVD decomp. QR is most stable,
but can be 2x slower than LU.

	****n_oversamples = 10. This follows Sklearn convention to increase the chance

	of more accurate SVD.

References

	Sklearn’s RandomizedSVD

	Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061

	A randomized algorithm for the decomposition of matrices
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert

	An implementation of a randomized algorithm for principal component
analysis
A. Szlam et al. 2014

	
hyperlearn.big_data.randomized.randomized_projection(X, k, solver='lu', max_iter=4)

	[Edited 8/11/2018 Added QR Q_only parameter]
Projects X onto some random eigenvectors, then using a special
variant of Orthogonal Iteration, finds the closest orthogonal
representation for X.

Solver can be QR or LU or None.

hyperlearn.big_data.truncated module

	
hyperlearn.big_data.truncated.truncatedEigh(XTX, n_components=2, tol=None, svd=False, which='largest')

	[Edited 6/11/2018 Added smallest / largest command]
Computes the Truncated Eigendecomposition of a Hermitian Matrix
(positive definite). K = 2 for default.
Return format is LARGEST eigenvalue first.

If SVD is True, then outputs S2**0.5 and sets negative S2 to 0
and outputs VT and not V.

Uses ARPACK from Scipy to compute the truncated decomp. Note that
to make it slightly more stable and faster, follows Sklearn’s
random intialization from -1 -> 1.

Also note tolerance is resolution(X), and NOT eps(X)

Might switch to SPECTRA in the future.

EIGH FLIP is called to flip the eigenvector signs for deterministic
output.

	
hyperlearn.big_data.truncated.truncatedSVD(X, n_components=2, tol=None, transpose=True, U_decision=False, which='largest')

	[Edited 6/11/2018 Added which command - can get largest or smallest eigen components]
Computes the Truncated SVD of any matrix. K = 2 for default.
Return format is LARGEST singular first first.

Uses ARPACK from Scipy to compute the truncated decomp. Note that
to make it slightly more stable and faster, follows Sklearn’s
random intialization from -1 -> 1.

Also note tolerance is resolution(X), and NOT eps(X). Also note
TRANSPOSE is True. This means instead of computing svd(X) if p > n,
then computing svd(X.T) is faster, but you must output VT.T, S, U.T

Might switch to SPECTRA in the future.

SVD FLIP is called to flip the VT signs for deterministic
output. Note uses VT based decision and not U based decision.
U_decision can be changed to TRUE for Sklearn convention

	
hyperlearn.big_data.truncated.truncatedEig(X, n_components=2, tol=None, svd=False, which='largest')

	[Added 6/11/2018]
Computes truncated eigendecomposition given any matrix X. Directly
uses TruncatedSVD if memory is not enough, and returns eigen vectors/values.
Also argument for smallest eigen components are provided.

hyperlearn.decomposition.base module

hyperlearn.decomposition.NMF module

hyperlearn.decomposition.PCA module

hyperlearn.decomposition.PCA module

hyperlearn.discriminant_analysis.base module

hyperlearn.discriminant_analysis.QDA module

hyperlearn.impute.SVDImpute module

	
hyperlearn.impute.SVDImpute.fit(X, n_components='auto', standardise=True, copy=True)

	[Added 31/10/2018] [Edited 2/11/2018 Fixed SVDImpute]

Fits a SVD onto the training data by projecting it to a lower space after
being intially filled with column means. By default, n_components is
determined automatically using log(p+1). Setting too low or too high mirrors
mean imputation, and deletes the purpose of SVD imputation.

Returns:
1. S singular values
2. VT eigenvectors
+ mean, std, mins

	
hyperlearn.impute.SVDImpute.transform(X, S, VT, mean, std, mins, standardise, copy=True)

	[Added 31/10/2018] [Edited 2/11/2018 FIxed SVDImpute]

The fundamental advantage of HyperLearn’s SVD imputation is that a .transform
method is provided. I do not require seeing the whole matrix for imputation,
and can calculate SVD incrementally via the Incremental Module.

hyperlearn.metrics.cosine module

	
hyperlearn.metrics.cosine.cosine_dis

	[Added 22/10/2018]
Performs XXT*-1 + 1 quickly on the lower triangular part.

	
hyperlearn.metrics.cosine.cosine_dis_triangular

	[Added 22/10/2018]
Performs XXT*-1 + 1 quickly on the TCSR.

	
hyperlearn.metrics.cosine.cosine_distances(X, Y=None, triangular=False, n_jobs=1, copy=False)

	[Added 15/10/2018] [Edited 18/10/2018]
[Edited 22/10/2018 Added Y option]
Note: when using Y, speed improvement is approx 5-10% only from Sklearn.

Slightly faster than Sklearn’s Cosine Distances implementation.
If you set triangular to TRUE, the result is much much faster.
(Approx 50% faster than Sklearn)

	
hyperlearn.metrics.cosine.cosine_distances_sparse(val, colPointer, rowIndices, n, p, triangular=False, dense_output=True, n_jobs=1, copy=True)

	[Added 22/10/2018]
Slightly faster than Sklearn’s Cosine Distances implementation.

If dense_output is set to FALSE, then a TCSR Matrix (Triangular CSR Matrix) is
provided and not a CSR matrix. This has the advantage of using only 1/2n^2 - n
memory and not n^2 memory.

	
hyperlearn.metrics.cosine.cosine_sim_triangular(N, D)

	[Added 21/10/2018]
Quickly performs X / norm_rows / norm_rows.T on the TCSR matrix.

	
hyperlearn.metrics.cosine.cosine_sim_triangular_parallel

	[Added 21/10/2018]
Quickly performs X / norm_rows / norm_rows.T on the TCSR matrix.

	
hyperlearn.metrics.cosine.cosine_sim_triangular_single

	[Added 21/10/2018]
Quickly performs X / norm_rows / norm_rows.T on the TCSR matrix.

	
hyperlearn.metrics.cosine.cosine_similarity(X, Y=None, triangular=False, n_jobs=1, copy=False)

	[Added 20/10/2018] [Edited 22/201/2018]
[Edited 22/10/2018 Added Y option]
Note: when using Y, speed improvement is approx 5% only from Sklearn.

Cosine similarity is approx the same speed as Sklearn, but uses approx 10%
less memory. One clear advantage is if you set triangular to TRUE, then it’s faster.

	
hyperlearn.metrics.cosine.cosine_similarity_sparse(val, colPointer, rowIndices, n, p, triangular=False, dense_output=True, n_jobs=1, copy=True)

	[Added 20/10/2018] [Edited 21/10/2018]
Slightly faster than Sklearn’s Cosine Similarity implementation.

If dense_output is set to FALSE, then a TCSR Matrix (Triangular CSR Matrix) is
provided and not a CSR matrix. This has the advantage of using only 1/2n^2 - n
memory and not n^2 memory.

hyperlearn.metrics.euclidean module

	
hyperlearn.metrics.euclidean.euclidean_distances(X, Y=None, triangular=False, squared=False, n_jobs=1)

	[Added 15/10/2018] [Edited 16/10/2018]
[Edited 22/10/2018 Added Y option]
Notice: parsing in Y will result in only 10% - 15% speed improvement, not 30%.

Much much faster than Sklearn’s implementation. Approx not 30% faster. Probably
even faster if using n_jobs = -1. Uses the idea that distance(X, X) is symmetric,
and thus algorithm runs only on 1/2 triangular part.

	Old complexity:

	X @ XT n^2p
rowSum(X^2) np
XXT*-2 n^2
XXT+X^2 2n^2
maximum(XXT,0) n^2

n^2p + 4n^2 + np

	New complexity:

	sym X @ XT n^2p/2
rowSum(X^2) np
sym XXT*-2 n^2/2
sym XXT+X^2 n^2
maximum(XXT,0) n^2/2

n^2p/2 + 2n^2 + np

So New complexity approx= 1/2(Old complexity)

	
hyperlearn.metrics.euclidean.euclidean_distances_sparse(val, colPointer, rowIndices, n, p, triangular=False, dense_output=True, squared=False, n_jobs=1)

	[Added 15/10/2018] [Edited 21/10/2018]
Much much faster than Sklearn’s implementation. Approx not 60% faster. Probably
even faster if using n_jobs = -1 (actually 73% faster). [n = 10,000 p = 1,000]
Uses the idea that distance(X, X) is symmetric, and thus algorithm runs only on
1/2 triangular part. Also notice memory usage is now 60% better than Sklearn.

If dense_output is set to FALSE, then a TCSR Matrix (Triangular CSR Matrix) is
provided and not a CSR matrix. This has the advantage of using only 1/2n^2 - n
memory and not n^2 memory.

	Old complexity:

	X @ XT n^2p
rowSum(X^2) np
XXT*-2 n^2
XXT+X^2 2n^2
maximum(XXT,0) n^2

n^2p + 4n^2 + np

	New complexity:

	sym X @ XT n^2p/2
rowSum(X^2) np
sym XXT*-2 n^2/2
sym XXT+X^2 n^2
maximum(XXT,0) n^2/2

n^2p/2 + 2n^2 + np

So New complexity approx= 1/2(Old complexity)

	
hyperlearn.metrics.euclidean.euclidean_triangular(S, D, squared=False)

	[Added 21/10/2018]
Quickly performs -2D + X^2 + X.T^2 on the TCSR matrix.
Also applies maximum(D, 0) and then square roots distances
if required.

	
hyperlearn.metrics.euclidean.euclidean_triangular_parallel

	[Added 21/10/2018]
Quickly performs -2D + X^2 + X.T^2 on the TCSR matrix.
Also applies maximum(D, 0) and then square roots distances
if required.

	
hyperlearn.metrics.euclidean.euclidean_triangular_single

	[Added 21/10/2018]
Quickly performs -2D + X^2 + X.T^2 on the TCSR matrix.
Also applies maximum(D, 0) and then square roots distances
if required.

	
hyperlearn.metrics.euclidean.maximum0

	[Added 15/10/2018] [Edited 21/10/2018]
Computes maxmimum(XXT, 0) faster. Much faster than Sklearn since uses
the notion that distance(X, X) is symmetric.

	Steps:

	
	maximum(XXT, 0)

	Optimised. Instead of n^2 operations, does n(n-1)/2 operations.

	
hyperlearn.metrics.euclidean.maximum0_parallel

	[Added 15/10/2018] [Edited 21/10/2018]
Computes maxmimum(XXT, 0) faster. Much faster than Sklearn since uses
the notion that distance(X, X) is symmetric.

	Steps:

	
	maximum(XXT, 0)

	Optimised. Instead of n^2 operations, does n(n-1)/2 operations.

	
hyperlearn.metrics.euclidean.mult_minus2

	[Added 17/10/2018]
Quickly multiplies XXT by -2. Uses notion that XXT is symmetric,
hence only lower triangular is multiplied.

hyperlearn.metrics.pairwise module

hyperlearn.sparse.base module

	
hyperlearn.sparse.base.CreateCSR(X, n_jobs=1)

	[Added 10/10/2018] [Edited 13/10/2018]
Much much faster than Scipy. In fact, HyperLearn uses less memory,
by noticing indices >= 0, hence unsigned ints are used.

Likewise, parallelisation is seen possible with Numba with n_jobs.
Notice, an error message will be provided if 20% of the data is only zeros.
It needs to be more than 20% zeros for CSR Matrix to shine.

	
hyperlearn.sparse.base.create_csr(X, rowCount, nnz, temp)

	[Added 10/10/2018] [Edited 13/10/2018]
Before used extra memory keeping a Boolean Matrix (np bytes) and a
ColIndex pointer which used p memory. Now, removed (np + p) memory usage,
meaning larger matrices can be handled.

Algorithm is 3 fold:

	Create RowIndices

	
	For every row in data:

	
	Store until a non 0 is seen.

Algorithm takes approx O(n + np) time, which is similar to Scipy’s.
The only difference is now, parallelisation is possible, which can
cut the time to approx O(n + np/c) where c = no of threads

	
hyperlearn.sparse.base.create_csr_cache

	[Added 10/10/2018] [Edited 13/10/2018]
Before used extra memory keeping a Boolean Matrix (np bytes) and a
ColIndex pointer which used p memory. Now, removed (np + p) memory usage,
meaning larger matrices can be handled.

Algorithm is 3 fold:

	Create RowIndices

	
	For every row in data:

	
	Store until a non 0 is seen.

Algorithm takes approx O(n + np) time, which is similar to Scipy’s.
The only difference is now, parallelisation is possible, which can
cut the time to approx O(n + np/c) where c = no of threads

	
hyperlearn.sparse.base.create_csr_parallel

	[Added 10/10/2018] [Edited 13/10/2018]
Before used extra memory keeping a Boolean Matrix (np bytes) and a
ColIndex pointer which used p memory. Now, removed (np + p) memory usage,
meaning larger matrices can be handled.

Algorithm is 3 fold:

	Create RowIndices

	
	For every row in data:

	
	Store until a non 0 is seen.

Algorithm takes approx O(n + np) time, which is similar to Scipy’s.
The only difference is now, parallelisation is possible, which can
cut the time to approx O(n + np/c) where c = no of threads

	
hyperlearn.sparse.base.determine_nnz

	Uses close to no memory at all when computing how many non
zeros are in the matrix. Notice the difference with Scipy
is HyperLearn does NOT use nonzero(). This reduces memory
usage dramatically.

	
hyperlearn.sparse.base.getDtype(p, size, uint=True)

	Computes the exact best possible data type for CSR Matrix
creation.

hyperlearn.sparse.csr module

	
hyperlearn.sparse.csr.XXT_sparse(val, colPointer, rowIndices, n, p)

	See _XXT_sparse documentation.

	
hyperlearn.sparse.csr.add_0

	

	
hyperlearn.sparse.csr.add_1

	

	
hyperlearn.sparse.csr.add_A

	

	
hyperlearn.sparse.csr.diagonal

	[Added 10/10/2018] [Edited 13/10/2018]
Extracts the diagonal elements of a CSR Matrix. Note only gets
square diagonal (not off-diagonal). HyperLearn’s algorithm is faster
than Scipy’s, as it uses binary search, whilst Scipy uses Linear Search.

d = min(n, p)
HyperLearn = O(d log p)
Scipy = O(dp)

	
hyperlearn.sparse.csr.diagonal_add(val, colPointer, rowIndices, n, p, addon, copy=True)

	See _diagonal_add documentation.

	
hyperlearn.sparse.csr.div_0

	

	
hyperlearn.sparse.csr.div_1

	

	
hyperlearn.sparse.csr.div_A

	

	
hyperlearn.sparse.csr.get_element

	[Added 14/10/2018]
Get A[i,j] element. HyperLearn’s algorithm is O(logp) complexity, which is much
better than Scipy’s O(p) complexity. HyperLearn uses binary search to find the
element.

	
hyperlearn.sparse.csr.matT_mat

	Added [14/10/2018]
A.T @ X is found where X is a dense matrix. Mostly the same as Scipy, albeit slightly faster.
The difference is now, HyperLearn is parallelized, which can reduce times by 1/2 or more.

	
hyperlearn.sparse.csr.matT_mat_parallel

	Added [14/10/2018]
A.T @ X is found where X is a dense matrix. Mostly the same as Scipy, albeit slightly faster.
The difference is now, HyperLearn is parallelized, which can reduce times by 1/2 or more.

	
hyperlearn.sparse.csr.matT_vec

	Added [13/10/2018]
X.T @ y is found. Notice how instead of converting CSR to CSC matrix, a direct
X.T @ y can be found. Same complexity as mat_vec(X, y). Also, HyperLearn is
parallelized, allowing for O(np/c) complexity.

	
hyperlearn.sparse.csr.matT_vec_parallel

	Added [13/10/2018]
X.T @ y is found. Notice how instead of converting CSR to CSC matrix, a direct
X.T @ y can be found. Same complexity as mat_vec(X, y). Also, HyperLearn is
parallelized, allowing for O(np/c) complexity.

	
hyperlearn.sparse.csr.mat_mat

	Added [14/10/2018]
A @ X is found where X is a dense matrix. Mostly the same as Scipy, albeit slightly faster.
The difference is now, HyperLearn is parallelized, which can reduce times by 1/2 or more.

	
hyperlearn.sparse.csr.mat_mat_parallel

	Added [14/10/2018]
A @ X is found where X is a dense matrix. Mostly the same as Scipy, albeit slightly faster.
The difference is now, HyperLearn is parallelized, which can reduce times by 1/2 or more.

	
hyperlearn.sparse.csr.mat_vec

	Added [13/10/2018]
X @ y is found. Scipy & HyperLearn has similar speed. Notice, now
HyperLearn can be parallelised! This reduces complexity to approx
O(np/c) where c = no of threads / cores

	
hyperlearn.sparse.csr.mat_vec_parallel

	Added [13/10/2018]
X @ y is found. Scipy & HyperLearn has similar speed. Notice, now
HyperLearn can be parallelised! This reduces complexity to approx
O(np/c) where c = no of threads / cores

	
hyperlearn.sparse.csr.max_0

	

	
hyperlearn.sparse.csr.max_1

	

	
hyperlearn.sparse.csr.max_A

	

	
hyperlearn.sparse.csr.mean_0

	

	
hyperlearn.sparse.csr.mean_1

	

	
hyperlearn.sparse.csr.mean_A

	

	
hyperlearn.sparse.csr.min_0

	

	
hyperlearn.sparse.csr.min_1

	

	
hyperlearn.sparse.csr.min_A

	

	
hyperlearn.sparse.csr.mult_0

	

	
hyperlearn.sparse.csr.mult_1

	

	
hyperlearn.sparse.csr.mult_A

	

	
hyperlearn.sparse.csr.rowSum

	[Added 17/10/2018]
Computes rowSum**2 for sparse matrix efficiently, instead of using einsum

	
hyperlearn.sparse.csr.sum_0

	

	
hyperlearn.sparse.csr.sum_1

	

	
hyperlearn.sparse.csr.sum_A

	

hyperlearn.sparse.tcsr module

Module contents

hyperlearn.base

The base module contains several decorators and methods.

Example code:

Singular Value Decomposition

import hyperlearn as hl
U, S, VT = hl.linalg.svd(X)

Pseudoinverse of a matrix using Cholesky Decomposition

from hyperlearn.linalg import pinvc
inv = pinvc(X)

check if pinv(X) * X = identity
check = inv.dot(X)

QR Decomposition wanting only Q matrix

from hyperlearn import linalg
Q = linalg.qr(X, Q_only = True)

check if Q == Q from full QR
q, r = linalg.qr(X)

hyperlearn.linalg

The linalg module contains all mathematical methods, decompositions and mirrors both Numpy’s linalg and Scipy’s linalg modules. HyperLearn’s modules are all optimized and I also showcase some novel new algorithms.

Matrix Decompositions

	Cholesky Decomposition

	cholesky(X, [alpha])

	:math:`X=UsigmaV^T

	Symmetric Square

	LU Decomposition

	lu(X, [L_only, U_only, overwrite])

	X = L @ U

	Any Matrix

	Singular Value Decomposition

	svd(X, [U_decision, overwrite])

	X = U * S @ V.T

	Any Matrix

	QR Decomposition

	qr(X, [Q_only, R_only, overwrite])

	X = Q @ R

	Any Matrix

Eigenvalue Problems

	Symmetric EigenDecomposition

	eigh(X, [alpha, svd, overwrite])

	X = V * L @ V^-1

	Symmetric Square

Matrix Inversion

	Cholesky Inverse

	cho_inv(X, [turbo])

	inv(X) @ X = I

	Symmetric Square

	Pseudoinverse (Cholesky)

	pinvc(X, [alpha, turbo])

	inv(X) @ X = I

	Any Matrix

	Symmetric Pseudoinverse

	pinvh(X, [alpha, turbo, n_jobs])

	inv(X) @ X = I

	Symmetric Square

	Pseudoinverse (SVD)

	pinv(X, [alpha, overwrite])

	inv(X) @ X = I

	Any Matrix

	Pseudoinverse (LU Decomp)

	pinvl(X, [alpha, turbo, overwrite])

	inv(X) @ X = I

	Square Matrix

License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
——————————–

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work
for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

	Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a “copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

Contact

Please email me for licensing questions.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hyperlearn	

 	
 	
 hyperlearn.base	

 	
 	
 hyperlearn.big_data.base	

 	
 	
 hyperlearn.big_data.incremental	

 	
 	
 hyperlearn.big_data.lsmr	

 	
 	
 hyperlearn.big_data.randomized	

 	
 	
 hyperlearn.big_data.truncated	

 	
 	
 hyperlearn.exceptions	

 	
 	
 hyperlearn.impute.SVDImpute	

 	
 	
 hyperlearn.linalg	

 	
 	
 hyperlearn.metrics.cosine	

 	
 	
 hyperlearn.metrics.euclidean	

 	
 	
 hyperlearn.metrics.pairwise	

 	
 	
 hyperlearn.numba	

 	
 	
 hyperlearn.random	

 	
 	
 hyperlearn.solvers	

 	
 	
 hyperlearn.sparse.base	

 	
 	
 hyperlearn.sparse.csr	

 	
 	
 hyperlearn.sparse.tcsr	

 	
 	
 hyperlearn.stats	

 	
 	
 hyperlearn.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | X

A

 	
 	add_0 (in module hyperlearn.sparse.csr)

 	add_1 (in module hyperlearn.sparse.csr)

 	add_A (in module hyperlearn.sparse.csr)

 	
 	addDiagonal() (in module hyperlearn.utils)

 	arange (in module hyperlearn.numba)

 	array() (in module hyperlearn.base)

C

 	
 	cast() (in module hyperlearn.base)

 	check() (in module hyperlearn.base)

 	cholesky (in module hyperlearn.numba)

 	cholesky() (in module hyperlearn.linalg)

 	cholSolve() (in module hyperlearn.linalg)

 	constant() (in module hyperlearn.base)

 	corr() (in module hyperlearn.stats)

 	cosine_dis (in module hyperlearn.metrics.cosine)

 	cosine_dis_triangular (in module hyperlearn.metrics.cosine)

 	cosine_distances() (in module hyperlearn.metrics.cosine)

 	
 	cosine_distances_sparse() (in module hyperlearn.metrics.cosine)

 	cosine_sim_triangular() (in module hyperlearn.metrics.cosine)

 	cosine_sim_triangular_parallel (in module hyperlearn.metrics.cosine)

 	cosine_sim_triangular_single (in module hyperlearn.metrics.cosine)

 	cosine_similarity() (in module hyperlearn.metrics.cosine)

 	cosine_similarity_sparse() (in module hyperlearn.metrics.cosine)

 	create_csr() (in module hyperlearn.sparse.base)

 	create_csr_cache (in module hyperlearn.sparse.base)

 	create_csr_parallel (in module hyperlearn.sparse.base)

 	CreateCSR() (in module hyperlearn.sparse.base)

D

 	
 	determine_nnz (in module hyperlearn.sparse.base)

 	diag() (in module hyperlearn.base)

 	diagonal (in module hyperlearn.sparse.csr)

 	diagonal_add() (in module hyperlearn.sparse.csr)

 	
 	diagSum() (in module hyperlearn.base)

 	div_0 (in module hyperlearn.sparse.csr)

 	div_1 (in module hyperlearn.sparse.csr)

 	div_A (in module hyperlearn.sparse.csr)

 	dtype() (in module hyperlearn.base)

E

 	
 	eig() (in module hyperlearn.linalg)

 	eig_flip() (in module hyperlearn.utils)

 	eigh (in module hyperlearn.numba)

 	eigh() (in module hyperlearn.linalg)

 	einsum() (in module hyperlearn.base)

 	
 	eps() (in module hyperlearn.base)

 	euclidean_distances() (in module hyperlearn.metrics.euclidean)

 	euclidean_distances_sparse() (in module hyperlearn.metrics.euclidean)

 	euclidean_triangular() (in module hyperlearn.metrics.euclidean)

 	euclidean_triangular_parallel (in module hyperlearn.metrics.euclidean)

 	euclidean_triangular_single (in module hyperlearn.metrics.euclidean)

F

 	
 	fastDot() (in module hyperlearn.utils)

 	fit() (in module hyperlearn.impute.SVDImpute)

 	
 	floatType() (in module hyperlearn.big_data.lsmr)

 	FutureExceedsMemory

G

 	
 	get_element (in module hyperlearn.sparse.csr)

 	
 	getDtype() (in module hyperlearn.sparse.base)

H

 	
 	hyperlearn (module)

 	hyperlearn.base (module)

 	hyperlearn.big_data.base (module)

 	hyperlearn.big_data.incremental (module)

 	hyperlearn.big_data.lsmr (module)

 	hyperlearn.big_data.randomized (module)

 	hyperlearn.big_data.truncated (module)

 	hyperlearn.exceptions (module)

 	hyperlearn.impute.SVDImpute (module)

 	hyperlearn.linalg (module)

 	
 	hyperlearn.metrics.cosine (module)

 	hyperlearn.metrics.euclidean (module)

 	hyperlearn.metrics.pairwise (module)

 	hyperlearn.numba (module)

 	hyperlearn.random (module)

 	hyperlearn.solvers (module)

 	hyperlearn.sparse.base (module)

 	hyperlearn.sparse.csr (module)

 	hyperlearn.sparse.tcsr (module)

 	hyperlearn.stats (module)

 	hyperlearn.utils (module)

I

 	
 	invCholesky() (in module hyperlearn.linalg)

 	isArray() (in module hyperlearn.base)

 	isDict() (in module hyperlearn.base)

 	
 	isIterable() (in module hyperlearn.base)

 	isList() (in module hyperlearn.base)

 	isTensor() (in module hyperlearn.base)

L

 	
 	lapack (class in hyperlearn.utils)

 	lsmr() (in module hyperlearn.big_data.lsmr)

 	
 	lstsq (in module hyperlearn.numba)

 	lstsq() (in module hyperlearn.solvers)

 	lu() (in module hyperlearn.linalg)

M

 	
 	mat_mat (in module hyperlearn.sparse.csr)

 	mat_mat_parallel (in module hyperlearn.sparse.csr)

 	mat_vec (in module hyperlearn.sparse.csr)

 	mat_vec_parallel (in module hyperlearn.sparse.csr)

 	matT_mat (in module hyperlearn.sparse.csr)

 	matT_mat_parallel (in module hyperlearn.sparse.csr)

 	matT_vec (in module hyperlearn.sparse.csr)

 	matT_vec_parallel (in module hyperlearn.sparse.csr)

 	max_0 (in module hyperlearn.sparse.csr)

 	max_1 (in module hyperlearn.sparse.csr)

 	max_A (in module hyperlearn.sparse.csr)

 	maximum (in module hyperlearn.numba)

 	maximum0 (in module hyperlearn.metrics.euclidean)

 	maximum0_parallel (in module hyperlearn.metrics.euclidean)

 	mean() (in module hyperlearn.numba)

 	
 	mean_0 (in module hyperlearn.sparse.csr)

 	mean_1 (in module hyperlearn.sparse.csr)

 	mean_A (in module hyperlearn.sparse.csr)

 	memoryCovariance() (in module hyperlearn.utils)

 	memorySVD() (in module hyperlearn.utils)

 	memoryXTX() (in module hyperlearn.utils)

 	min_0 (in module hyperlearn.sparse.csr)

 	min_1 (in module hyperlearn.sparse.csr)

 	min_A (in module hyperlearn.sparse.csr)

 	minimum (in module hyperlearn.numba)

 	mult_0 (in module hyperlearn.sparse.csr)

 	mult_1 (in module hyperlearn.sparse.csr)

 	mult_A (in module hyperlearn.sparse.csr)

 	mult_minus2 (in module hyperlearn.metrics.euclidean)

 	multsum (in module hyperlearn.numba)

N

 	
 	norm (in module hyperlearn.numba)

 	
 	Numpy() (in module hyperlearn.base)

O

 	
 	ones() (in module hyperlearn.base)

 	
 	Orthogonalize() (in module hyperlearn.big_data.lsmr)

P

 	
 	partialEig() (in module hyperlearn.big_data.incremental)

 	partialSVD() (in module hyperlearn.big_data.incremental)

 	PartialWrongShape

 	pinv (in module hyperlearn.numba)

 	
 	pinv() (in module hyperlearn.linalg)

 	pinvCholesky() (in module hyperlearn.linalg)

 	pinvEig() (in module hyperlearn.linalg)

 	pinvh() (in module hyperlearn.linalg)

Q

 	
 	qr (in module hyperlearn.numba)

 	
 	qr() (in module hyperlearn.linalg)

 	qr_stats() (in module hyperlearn.stats)

R

 	
 	randomized_projection() (in module hyperlearn.big_data.randomized)

 	randomizedEig() (in module hyperlearn.big_data.randomized)

 	randomizedPinv() (in module hyperlearn.big_data.randomized)

 	randomizedSVD() (in module hyperlearn.big_data.randomized)

 	reflect() (in module hyperlearn.utils)

 	resolution() (in module hyperlearn.base)

 	
 	return_numpy() (in module hyperlearn.base)

 	return_torch() (in module hyperlearn.base)

 	ridge_stats() (in module hyperlearn.stats)

 	rowSum (in module hyperlearn.sparse.csr)

 	rowSum() (in module hyperlearn.base)

 	(in module hyperlearn.utils)

 	rowSum_A (in module hyperlearn.utils)

S

 	
 	setDiagonal() (in module hyperlearn.utils)

 	sign (in module hyperlearn.numba)

 	solve() (in module hyperlearn.solvers)

 	solveCholesky() (in module hyperlearn.solvers)

 	solveEig() (in module hyperlearn.solvers)

 	solvePartial() (in module hyperlearn.solvers)

 	solveSVD() (in module hyperlearn.solvers)

 	solveTLS() (in module hyperlearn.solvers)

 	squaresum (in module hyperlearn.numba)

 	
 	squareSum() (in module hyperlearn.base)

 	stack() (in module hyperlearn.base)

 	sum_0 (in module hyperlearn.sparse.csr)

 	sum_1 (in module hyperlearn.sparse.csr)

 	sum_A (in module hyperlearn.sparse.csr)

 	svd (in module hyperlearn.numba)

 	svd() (in module hyperlearn.linalg)

 	svd_flip() (in module hyperlearn.utils)

 	svd_stats() (in module hyperlearn.stats)

T

 	
 	T() (in module hyperlearn.base)

 	Tensor() (in module hyperlearn.base)

 	Tensors() (in module hyperlearn.base)

 	torch_dot() (in module hyperlearn.base)

 	
 	traceXTX (in module hyperlearn.utils)

 	transform() (in module hyperlearn.impute.SVDImpute)

 	truncatedEig() (in module hyperlearn.big_data.truncated)

 	truncatedEigh() (in module hyperlearn.big_data.truncated)

 	truncatedSVD() (in module hyperlearn.big_data.truncated)

U

 	
 	uniform() (in module hyperlearn.random)

 	
 	uniform_vector (in module hyperlearn.random)

 	USE_NUMBA (in module hyperlearn.base)

X

 	
 	XXT_sparse() (in module hyperlearn.sparse.csr)

 nav.xhtml

 Table of Contents

 		
 Welcome to HyperLearn!

 		
 hyperlearn

 		
 hyperlearn package

 		
 Submodules

 		
 hyperlearn.base module

 		
 hyperlearn.linalg module

 		
 hyperlearn.utils module

 		
 hyperlearn.random module

 		
 hyperlearn.exceptions module

 		
 hyperlearn.multiprocessing module

 		
 hyperlearn.numba module

 		
 hyperlearn.solvers module

 		
 hyperlearn.stats module

 		
 hyperlearn.big_data.base module

 		
 hyperlearn.big_data.incremental module

 		
 hyperlearn.big_data.lsmr module

 		
 hyperlearn.big_data.randomized module

 		
 hyperlearn.big_data.truncated module

 		
 hyperlearn.decomposition.base module

 		
 hyperlearn.decomposition.NMF module

 		
 hyperlearn.decomposition.PCA module

 		
 hyperlearn.decomposition.PCA module

 		
 hyperlearn.discriminant_analysis.base module

 		
 hyperlearn.discriminant_analysis.QDA module

 		
 hyperlearn.impute.SVDImpute module

 		
 hyperlearn.metrics.cosine module

 		
 hyperlearn.metrics.euclidean module

 		
 hyperlearn.metrics.pairwise module

 		
 hyperlearn.sparse.base module

 		
 hyperlearn.sparse.csr module

 		
 hyperlearn.sparse.tcsr module

 		
 Module contents

 		
 hyperlearn.base

 		
 Example code:

 		
 hyperlearn.linalg

 		
 Matrix Decompositions

 		
 Eigenvalue Problems

 		
 Matrix Inversion

 		
 License

 		
 Preamble

 		
 TERMS AND CONDITIONS

 		
 Contact

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

